[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Subject Index][Author Index]

Another New Paper

...mayhaps the last of the year...? Anyway, another in the growing list of 2007 nee 2006 papers:

Moreno, K., Carrano, M.T., and Snyder, R. 2006. Morphological changes in pedal phalanges through ornithopod dinosaur evolution: a biomechanical approach. Journal of Morphology 268(1):50-63. doi: 10.1002/jmor.10498. ABSTRACT: The evolution of ornithopod dinosaurs provides a well-documented example of the transition from digitigrady to subunguligrady. During this transition, the ornithopod pes was drastically altered from the plesiomorphic dinosaurian morphology (four digits, claw-shaped unguals, strongly concavo-convex joints, phalanges longer than wide, excavated collateral ligament fossae, presence of sagittal ridge, and prominent processes for the attachment of tendons) to a more derived condition (tridactyly, modification of the unguals into hooves, phalanges wider and thinner than long, lack of collateral ligament fossae, loss of sagittal ridge and tendon attachment processes, relatively flattened articular surfaces). These changes are particularly noteworthy given the overall conservatism in pedal morphology seen across Dinosauria. But what are the functional consequences of these specific morphological transitions? To study them, we examine a wide range of pedal morphologies in four non-avian dinosaurs and two birds. Our analyses of the external morphology, two-dimensional models (using Finite Element Analysis), and internal bone structure demonstrate that this evolutionary shift was accompanied by a loss of digit mobility and flexibility. In addition, pedal posture was modified to better align the pes with the main direction of the ground reaction force, thus becoming well suited to support high loads. These conclusions can be applied to other, parallel evolutionary changes (in both dinosaurs and mammals) that involved similar transitions to a subunguligrade posture.

Jerry D. Harris
Director of Paleontology
Dixie State College
Science Building
225 South 700 East
St. George, UT  84770   USA
Phone: (435) 652-7758
Fax: (435) 656-4022
E-mail: jharris@dixie.edu
and     dinogami@gmail.com

"Trying to estimate the divergence times
of fungal, algal or prokaryotic groups on
the basis of a partial reptilian fossil and
protein sequences from mice and humans
is like trying to decipher Demotic Egyptian with
the help of an odometer and the Oxford
English Dictionary."
-- D. Graur & W. Martin (_Trends
in Genetics_ 20[2], 2004)