[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Subject Index][Author Index]

[dinosaur] Comments on Dinosaur metabolism and the allometry of maximum growth rate (free pdfs)

Ben Creisler

New on PLoS ONE:


Eva Maria Griebeler & Jan Werner (2018)
Formal comment on: Myhrvold (2016) Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE; 11(11): e0163205.Â
PLoS ONE 13(2): e0184756
doi: https://doi.org/10.1371/journal.pone.0184756

In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individualâs ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) fast growing ectothermic reptiles. Myhrvold examined two hypotheses (H1 and H2) regarding our study. However, we did neither infer dinosaurian thermoregulation strategies from group-wide averages (H1) nor were our results based on that Gmax and metabolic rate (MR) are related (H2). In order to assess whether single dinosaurian Gmax values fit to those of extant endotherms (birds) or of ectotherms (reptiles), we already used a method suggested by Myhrvold to avoid H1, and we only discussed pros and cons of a relation between Gmax and MR and did not apply it (H2). We appreciate Myhrvoldâs efforts in eliminating the correlation between Gmax and M in order to statistically improve vertebrate scaling regressions on maximum gain in body mass. However, we show here that his mass-specific maximum growth rate (kC) replacing Gmax (= MkC) does not model the expected higher mass gain in larger than in smaller species for any set of species. We also comment on, why we considered extant reptiles and birds as reference models for extinct dinosaurs and why we used phylogenetically-informed regression analysis throughout our study. Finally, we question several arguments given in Myhrvold in order to support his results.


Nathan P. Myhrvold (2018)
Response to formal comment on Myhrvold (2016) submitted by Griebeler and Werner (2017). PLoS ONE 13(2): e0192912.
doi:Â https://doi.org/10.1371/journal.pone.0192912

Griebeler and Werner offer a formal comment on Myhrvold, 2016 defending the conclusions of Werner and Griebeler, 2014. Although the comment criticizes several aspects of methodology in Myhrvold, 2016, all three papers concur on a key conclusion: the metabolism of extant endotherms and ectotherms cannot be reliably classified using growth-rate allometry, because the growth rates of extant endotherms and ectotherms overlap. A key point of disagreement is that the 2014 paper concluded that despite this general case, one can nevertheless classify dinosaurs as ectotherms from their growth rate allometry. The 2014 conclusion is based on two factors: the assertion (made without any supporting arguments) that the comparison with dinosaurs must be restricted only to extant sauropsids, ignoring other vertebrate groups, and that extant sauropsid endotherm and ectotherm growth rates in a data set studied in the 2014 work do not overlap. The Griebeler and Werner formal comment presents their first arguments in support of the restriction proposition. In this response I show that this restriction is unsupported by established principles of phylogenetic comparison. In addition, I show that the data set studied in their 2014 work does show overlap, and that this is visible in one of its figures. I explain how either point effectively invalidates the conclusion of their 2014 paper. I also address the other methodological criticisms of Myhrvold 2016, and find them unsupported.

Virus-free. www.avg.com