[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Subject Index][Author Index]

[dinosaur] Early theropod species developmental patterns and variation




Ben Creisler
bcreisler@gmail.com


A new paper:

C. T. Griffin (2018)
Developmental patterns and variation among early theropods
Journal of Anatomy (advance online publication)
DOI: 10.1111/joa.12775
http://onlinelibrary.wiley.com/doi/10.1111/joa.12775/full




Understanding ontogenetic patterns is important in vertebrate paleontology because the assessed skeletal maturity of an individual often has implications for paleobiogeography, species synonymy, paleobiology, and body size evolution of major clades. Further, for many groups the only means of confidently determining ontogenetic status of an organism is through the destructive process of histological sampling. Although the ontogenetic patterns of Late Jurassic and Cretaceous dinosaurs are better understood, knowledge of the ontogeny of the earliest dinosaurs is relatively poor because most species-level growth series known from these groups are small (usually, maximum of n ~ 5) and incomplete. To investigate the morphological changes that occur during ontogeny in early dinosaurs, I used ontogenetic sequence analysis (OSA) to reconstruct developmental sequences of morphological changes in the postcranial ontogeny of the early theropods Coelophysis bauri and Megapnosaurus rhodesiensis, both of which are known from large sample sizes (n = 174 and 182, respectively). I found a large amount of sequence polymorphism (i.e. intraspecific variation in developmental patterns) in both taxa, and especially in C. bauri, which possesses this variation in every element analyzed. Megapnosaurus rhodesiensis is similar, but it possesses no variation in the sequence of development of ontogenetic characters in the tibia and tarsus. Despite the large amount of variation in development, many characters occur consistently earlier or later in ontogeny and could therefore be important morphological features for assessing the relative maturity of other early theropods. Additionally, there is a phylogenetic signal to the order in which homologous characters appear in ontogeny, with homologous characters appearing earlier or later in developmental sequences of early theropods and the close relatives of dinosaurs, silesaurids. Many of these morphological features are important characters for the reconstruction of archosaurian phylogeny (e.g. trochanteric shelf). Because these features vary in presence or appearance with ontogeny, these characters should be used with caution when undertaking phylogenetic analyses in these groups, since a specimen may possess certain character states owing to ontogenetic stage, not evolutionary relationships.

Virus-free. www.avg.com